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ABSTRACT

Many historical map sheets are publicly available for studies that
require long-term historical geographic data. The cartographic de-
sign of these maps includes a combination of map symbols and text
labels. Automatically reading text labels from map images could
greatly speed up the map interpretation and helps generate rich
metadata describing the map content. Many text detection algo-
rithms have been proposed to locate text regions in map images
automatically, but most of the algorithms are trained on out-of-
domain datasets (e.g., scenic images). Training data determines the
quality of machine learning models, and manually annotating text
regions in map images is labor-extensive and time-consuming. On
the other hand, existing geographic data sources, such as Open-
StreetMap (OSM), contain machine-readable map layers, which
allow us to separate out the text layer and obtain text label annota-
tions easily. However, the cartographic styles between OSM map
tiles and historical maps are significantly different. This paper pro-
poses a method to automatically generate an unlimited amount of
annotated historical map images for training text detection models.
We use a style transfer model to convert contemporary map im-
ages into historical style and place text labels upon them. We show
that the state-of-the-art text detection models (e.g., PSENet) can
benefit from the synthetic historical maps and achieve significant
improvement for historical map text detection.
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1 INTRODUCTION

Historical maps are excellent sources for understanding human
activities and city development [1]. Many organizations such as the
United States Geological Survey (USGS)[22], Esri[4], and National
Library of Scotland (NLS) [18] have made a great effort in scanning
historical maps and releasing them for public use. US Fire Insurance
Atlase [17] digitized by the New York Public Library (NYPL) [11]
documents the change of environment and geography of the New
York City during the 19-th and early 20-th centuries. The USGS
topographic maps [22] preserve the past landscape of the entire
country during the 19-th century and provides invaluable support
for physical and cultural studies. The Ordnance Survey [18] pub-
lishes a variety of large-scale maps that cover the Great Britain
area in the 19-th century. These existing map series were initially
created for different reasons, such as taxation, and have greatly
served the purpose in that era. Nowadays, they continue to offer a
channel for us to look back in time.

In the recent years, researchers have attempted to automat-
ically extract text labels and produce metadata from historical
maps [10, 19]. In the mean time, many deep learning approaches
have been developed for detecting text in electronic documents
or scene images [7, 27, 31]. All these methods need to be trained
with a lot of training data to obtain the best performance. Fortu-
nately, the International Conference on Document Analysis and
Recognition (ICDAR) released several datasets to address text detec-
tion problems for scene image detection and scanned documents.
For both historical map text detection and scene text detection,
there are some challenges that are common in both domains. For
example, the variance of the font size can be large in both map and
scene images. Also, images in both domains use many different font
styles in the documents. However, some characteristics are unique
to historical maps. Historical maps often have a noisy (high edge
intensity) background, such as complex road networks or contour
lines in mountainous areas, while other electronic documents and
scene images usually have a simpler, homogeneous background
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Figure 1: First Row: Sample images from the ICDAR2015
Incidental Scene Text dataset. Second Row: Sample image
patches from the David Rumsey Maps dataset. Text labels
in these two datasets differ significantly in text arrangement
and style.

within the text region. Some map text labels (e.g., street names) can
have large spacing between characters. Moreover, map text can
be oriented and curved to follow the given underlying geographic
features, such as railroads, boundary lines, and rivers. In contrast,
documents and scene images usually have straight text in the hori-
zontal or vertical directions. These differences pose new challenges
to the text detection algorithms for handling historical maps. Due
to these differences, text detection models trained on scene images
may not perform well on historical map images.

To adapt existing text detection models to the historical map
domain, we need to feed the model some training data in the histor-
ical map domain. However, the labeled training data does not come
for free. Work is required to draw the bounding boxes/polygons
around the text regions, which can be quite time-consuming. This
paper proposes a method to automatically generate a large amount
of training data for the historical map text detection with minimal
manual work.

The general idea is that, we first produce a synthetic historical
map background layer without any text labels and then automat-
ically place text labels upon the layer. Since we have full control
over the text layer, ground-truth (annotation) information (i.e., text
bounding polygon) can be recorded automatically. Specifically, we
use a style transfer model CycleGAN to convert OpenStreetMap
raster images to the historical style and then use the QGIS PAL API
[20] to place the text labels on the historical map background. The
QGIS PAL API is able to place text labels according to the position
and geometry of the underlying geographical feature. For Point
features, the API places the label around the point. For Line fea-
tures, the API places the label along the line. After generating the
synthetic historical map background and placing the text labels, we
also have a method to compute the ground-truth bounding poly-
gons from the synthetic map image. We use the bounding polygon
instead of bounding rectangle representation, because the text la-
bels can be curved and sometimes arbitrarily shaped. The rotated
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bounding rectangles are not tight enough to enclose the text region
accurately.

The main contribution of the proposed approach is an end-to-
end pipeline to generate a large amount of annotated training data,
enabling the use of deep learning models for unlocking useful
textual information from historical map images. There are three
major advantages of the proposed approach: (1) Once the style
transfer model is trained on one map style, it can then generate
an unlimited number of images in this style. The dataset size is
guaranteed to be sufficient to train the deep-learning text detection
models. (2) The CycleGAN style transfer model does not need paired
data for training. Hence, the historical map images do not need to
cover the same region as the OSM data. (3) The style transfer model
can produce synthetic historical map images with any style, as
long as a small amount of training data is provided to initialize the
style transfer. No labeling information is required in the end-to-end
process. In the experiment section, We show that the PSE-Net, a
deep-learning based text detection model, can achieve improved
performance after fine-tuning it on the proposed synthetic map
dataset.

2 APPROACH

In this section, we first describe the two datasets that we use to pro-
vide the source and target style, then explain the synthetic historical
map generation process in detail. There are three main steps in-
volved: synthetic historical map generation, text layer overlay, and
text annotation generation. The source code and the dataset that
we use to train the model is available at https://github.com/zekun-
li/generate_synthetic_historical _maps, and a live demo to show the
style-transferred synthetic historical map is available at https://zekun-
li.github.io/side-by-side/.

2.1 Data Sources for Style Transfer

We employ two data sources for the synthetic historical map gener-
ation. (1) Open Street Maps (OSM) data, which provides the source
image for style transfer. (2) Ordnance Survey 6-inch maps in the
years of 1888-1913 (also referred to as the GB1900 6-inch layer on
the National Library of Scotland website!). The OSM data provides
the content of the synthetic map, and the Ordnance Survey data
provides the historical style of the synthetic map. We choose OSM
as the source image dataset because it is an open-source dataset
with data coverage over the full globe. It is easy to obtain both the
vector data and rasterized image tiles from the OSM. We use the
Ordnance Survey map sheets for target historical style since the
6-inch map covers the whole Britain area, and all the map sheets
have been georeferenced by the National Library of Scotland.

2.1.1 Open Street Map (OSM). There are two groups of data in-
volved from OSM. One is the data used to train the CycleGAN style
transfer model, and the other is the data used to generate a large
amount of historical map images for the downstream tasks. There
is no limitation of whether these two groups of data should be in
the same region or not. In our experiments, we used different re-
gions. Group 1 data is randomly downloaded from the Great Britain
region, and the second group is around the Birmingham region. We

!https://geo.nls.uk/maps/gb1900/
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Figure 2: Pipeline to generate a large amount of training data for text detection on historical maps. We first use a style transfer
network CycleGAN to convert an OSM image to the historical style, then associate the font, style and placement strategy ac-
cording to the underlying geographical feature. We use QGIS PAL API to place the text labels on the synthetic map background,
and design an approach to automatically generate the polygon, centerline and local height annotation for the text labels.
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Figure 3: Illustration of CycleGAN. Generator G learns to
convert OSM images to historical style and another genera-
tor F learns to convert the historical map images to the OSM
style. During training, both generators are trained together
with domain-specific discriminators. During synthetic data
generation, only G will be used to synthesize historical map
images from OSM.

downloaded the data at zoom level 16, and this yields 27,707 tiles
with size 256x256 in group 1 and 54,865 tiles in group 2. The raster
data for group one and two is downloaded from the WMFLabs
tile server? which does not contain text labels. The vector data for
group two is downloaded from the Geofabrik website.> There is no
need for vector data for training the CycleGAN model.

2.1.2  Ordnance Survey Historical Maps. While adding the text lay-
ers, we prefer to convert OSM raster images to the historical map
style and use the synthetic map as the map ground, instead of using
the real historical map directly as the background, because there is
no easy way to accurately remove the text labels from the existing
historical map images. Since removing the text labels requires the
knowledge of text location in advance (a.k.a text detection) and this
leads to the chicken and egg problem.

We only need the Ordnance Survey historical map data for train-
ing the CycleGAN model, and do not need real historical map

Zhttps://tiles.wmflabs.org/osm-no-labels/${z}/${x}/${y}.png
3https://download.geofabrik.de/europe/great-britain/england.html

anymore when the synthetic map images have been produced. In
terms of the study area, we used the same region as OSM group one
although there is no requirement of these two data sources need
to cover the same area. The raster tiles are also retrieved at zoom
level 16 with size 256x256.

2.2 Synthetic Historical Map Generation

The idea of style transfer is built upon the Generative Adversarial
Network (GAN). GAN models have a discriminator and a generator.
The generator is responsible for generating fake images, while the
discriminator tries to distinguish fake images from real images. The
two modules keep combating each other, and the discriminator
improves its ability to tell real from fake, and the generator keeps
generating images with better and better quality.

The difference between CycleGAN and other GAN models is
that the cycleGAN has two generators and discriminators. The two
generators are used to generate images with the two given styles,
and the discriminators are used to distinguish the images for two
styles, respectively. Hence, the network can convert the images
with style S to style T and then convert them back to S.

Formally, we can define the process as following. Let S = {si}?i 1
be the set of M Open Street Map images which do not contain any
text labels, and T = {ti}fi 1 be the set of N historical map images.
We define a Generator G : S — T that learns to translate s; to ;.
Also, we define another generator F : T — S that translate ; back
to s;. The Cycle Consistency Loss defined in Eq. 1 encourages
G(F(T)) =~ T and F(G(S)) = S. Meaningly, if an image is fed
through both generators sequentially, the output image should look
very similar to the original image itself with x; ~ G(F(x;)) and
xi = F(G(x;)).

Lcycle(G, F) :Es~p(s) [IIF(G(s)) = sll1] (1)
+Erq(p) IIG(F (1)) - t][1]
To ensure the high-quality of generated images, two discrim-
inators designed for each style are employed to distinguish the
real images from generated ones using Adversarial Loss in Eq. 2.
Specifically, we have Dg and D, where Dg tries to discriminate
between original images in S and the generated images in F(T),
and Dr tries to discriminate between original images in T and the
generated images in G(S).
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Figure 4: Visualization of the Open Street Map (OSM) tiles and the output synthetic historical map tiles.

L4dv(G, F, Ds, D1) =E;q(1) [logDr (2)]
+Esp(s) [log(1 = D1(G(5))]

Es~p(s) [logDS ()]
+E;q(r) [log(1 = Ds(F(1))]

In summary, the total loss L(G, F, Ds, Dt) is composed of two
parts: the cycle-consistency loss L j and the adversarial loss
Lado, and it can be written as L(G, F, Ds, D1) = Leyc1e(G H) +
AL,y (G, F,Ds, Dr).

To generate the synthetic historical map background images, we
take the trained model G and feed S as input. The output is a set
of images T" = G(S) = {t] }?;Il from OSM dataset whose style has
been translated into historical style. Figure 4 shows some sample
images from OSM and the output synthesized map tiles.

2.3 Text Layer Overlay

2.3.1 Font Size and Style. According to the underlying geographi-
cal feature type, we roughly divide the font size into three levels:
Large, Medium, and Small. The large labels correspond to the ge-
ographical features covering very large regions, and small ones
correspond to smaller regions. For the font style, we use several
fonts downloaded from FontSpace* and the Cheysson font from the
ArcGIS website®. We also include several MacOS system fonts in
the font family, which makes a total of 16 fonts. Each geographical
feature type has an associated font style and size, and the text labels
with the same underlying geo-feature have the same font style and
size. Table 1 shows the statistics of the font size information.

2.3.2  Text Label Placement. We utilize the QGIS PAL API for text
label placement. For Point features, the text labels are placed around
the point. For the MultiLine geo features, the text labels are placed
on the center of the line. For MultiPolygon geofeatures, labels are
placed around the center of the area. There are no overlapping
or intersecting text labels for any of the geo features. Specifically,
the underlying geo features might overlap with other features or

“https://www.fontspace.com/category/antique
Shttps://www.arcgis.com/home/item.html?id=6b12e5149fd549f4829725ead6affb55

Table 1: Font Size Statistics

Groups Size (pt) Geo Features

Large [60,80]  canal, city, county, town, village

waterfall, wetland, island

airfield, airport, allotment, archaeological
battlefield, camp site, cliff, dock, farmland
farm, forest, fort, hamlet, nature reserve
reservoir, ruins, vineyard, rail river, stream

others (e.g. streets)

Med.  [3545]

Small [20,30]
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Figure 5: Sample synthetic map region generated by our
model. Source map is Open Street Map (OSM) and the tar-
get style is the Ordnance Survey 6-inch historical map. Text
labels come from the vector data of OSM.

text labels, but the text labels should not overlap with each other.
Figure 5 shows a sample map region after the text labels are placed
on the synthetic map.
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2.4 Text Annotation Generation

We provide two representations of the text annotations: (1) Bound-
ing polygons - a tight concave polygon for each text label (2) Center-
lines and local heights - the centerline is provided in the form of a
sequence of points, and local height can be thought of as the height
of the bounding polygon. A bounding polygon can be constructed
when centerline and local height are both known. The reason we
provide two types of annotation is that some text detection algo-
rithms (e.g., TextSnake[14]) are centerline and local height-based,
while some others are polygon-based (e.g., PSENet [24]).

2.4.1  Bounding Polygon. When rendering the text layer with QGIS,
we produce two versions of the raster image: the colored version
and the gray-scale version. We set the non-text region to be trans-
parent for both versions and keep the text labels at exactly the same
position. In the colored version, each location name label is painted
with a different color. Thus it is easy to 1) separate all the text labels
from the transparent non-text region and 2) separate one particular
text label from all other labels. We convert the colored version from
RGBA space to the Black/White (BW) space to produce the gray-
scale version. The gray-scale version is then added to the synthetic
historical map background to render the complete map.

By differentiating the color of the pixels from the colored version,
we can obtain all the pixels belonging to the same text label. We call
the text region pixels as the foreground and other unrelated pixels as
the background. We then filter out the background color to obtain
the positions of the foreground pixels. Finally, we compute the
concave hull of the foreground pixels to generate the final bounding
polygon. We adopt the alphashape algorithm for the concave hull
computation and set the a parameter to be 0.02 empirically for all
the text labels. Following the ICDAR datasets convention, we store
the polygon points in clockwise order.

2.4.2 Centerline and Local Height. The centerline and local height
representation offer another way to describe the ground truth. The
centerline is a multi-segment line across the centerline pixels of
the text region. The local height denotes the height h (or diameter)
of the text region.

For the centerline computation, we use an existing Python pack-
age called centerline,® which utilizes the Voronoi diagram to
compute the centerline for the polygon. The border density param-
eter controls how many points to sample inside the polygon. With
small border density values, the resulting centerline will contain
a lot of details and is likely to form a tree structure as shown in
Figure 6. Larger border density values lead to a smoother centerline.
In our experiments, we empirically set the border density param-
eter (interpolation distance) to be 9. But even with a large border
density, there are still some branching lines at the two ends of the
centerline, as shown in Figure 6.

To further avoid tree branches and make the centerline genera-
tion robust to different interpolation values, we use the cubic curve
fitting function to generate neat centerlines that do not branch
at any point. For curve fitting, it is common to have the x-axis
(horizontal) values as the independent variables and fit a curve
y = f(x). However, if the centerline is almost vertical, the result of
using x values as independent variables will be poor (see “Wacos

Shttps://pypi.org/project/centerline/
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Figure 6: Centerline computed with different interpolation
distances. Larger interpolation values lead to smoother cen-
terline.

Brook” in Figure 7). Instead, for this case, we should fit along the
y-axis by x = f(y). To determine which axis values to use as the
independent variable, we use a simple condition checking that com-
putes the range of the x-axis values and y-axis values. Specifically,
we first calculate the maximum and minimum of the x-axis values
and y-axis values of the original centerline points: Xmax, Ymax,
Xmin and Yynin. Then we obtain the range of x-axis and y-axis with:
Xoar = Xmax — Xmin> Yoar = Ymax — Ymin. We choose the axis with
a larger range as the independent variable. The second image in
Figure 7 shows the final fitted centerline.

For the local height computation, we design a distance-transform
based algorithm to determine the height of the text region. Similar
to Section 2.4.1, we first use pixel color information to get an image
patch with only one text label. Given this color image patch I and the
polygon P computed from 2.4.1, we binarize I to generate a masked
version of the image M where pixels inside the polygon are assigned
to 1 and 0 otherwise. Let F = {M; j = 1} be the set of foreground
pixels and B = {M; j = 0} be the set of background pixels. We then
compute the Euclidean distance from each foreground pixel to the
background pixel and let the maximum distance be the local height
of the text region.

h = max(||F;, Bjll2) VieF,jeB ®)

3 EXPERIMENTS AND ANALYSIS

3.1 Datasets

3.1.1 ICDAR 2015 Incidental Scene Text. International Conference
on Document Analysis and Recognition (ICDAR) started releasing
datasets for text detection and recognition in 2011. The training
set in Incidental Scene Text contains 1,000 images with about 4,500
words. The text regions are annotated with tight quadrangles. This
dataset has large variances in text font sizes, styles, and perspective
angles, and mainly focuses on detecting text regions on scenic
images. Some sample images from this dataset are shown in Figure
1. This dataset is used to train the PSENet in the first setting.

3.1.2  SynthMap. This is the dataset that we introduce in this paper.
It contains 13,892 synthetic map tiles style transferred from the OSM
map images. Each map is of size 512x512 (concatenated from the
256x256 tiles), and the number of text regions on each map varies
depending on the density of the underlying geographical feature.
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Figure 7: Centerline-based bounding polygon produced with
original centerline with branches (left) and neat centerline
(right). The red points are the centerline locations and blue
line segments are the edges in the bounding polygon. The
left ones have messy polygons because the centerline points
are not sorted sequentially.

Table 2: David Rumsey Maps Statistics (SID: Series ID, map
images in the same series have similar style, # Maps: number
of map images in that map series. # Text: average number of
text regions in each map sheet)

SID #Maps #Text Study Areas

D0006 1 553 Tennessee

D0017 1 653 Stanislaus

D0041 2 485 Florida

D0042 12 786 Ohio, New Mexico, Indiana, Illinois
Michigan, Wisconsin, Minnesota, Iowa
Missouri, Kansas, Arkansas
Mississippi, Alabama, Nebraska

DO0079 1 354 UsS

D0089 1 671 Northern Pacific

D0090 1 607 Missouri

DO0117 6 1902  Indiana, Iowa, Nebraska, Colorado,
Wyoming, Montana

D5005 6 1534  North Carolina, South Carolina

Minneapolis, North Dakota
South Dakota, Oregon

There are 45,375 text regions in total. The annotation information
contains bounding polygon, centerline points, and the local height
of the text region.

3.1.3  David Rumsey Maps. Weinman [25] collected 31 historical
maps in the North America area from the David Rumsey map collec-
tion’ which span from 1866 to 1927. The map contains 12,578 words
with 9,555 phrases. The map image has been manually annotated
with quadrangles. The map images contain 9 series, and the number
of maps from each series is listed in Table 2.

"http://davidrumsey.com
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3.2 Text Detection Model

PSENet is a segmentation-based model that utilizes CNN features
from multiple layers of the network [9]. It can detect text instances
with arbitrary shape or rotation. Given an input image, it first
uses an FPN-based Network [12] with ResNet [6] as backbone,
then concatenate low-level features with high-level semantic fea-
tures. The network produces n feature maps of different resolutions
S1,S2, ..., Sn, where each S; is one segmentation mask that high-
lights the text instances at a certain scale. Among these masks,
S1 gives the segmentation result for the text instances with the
smallest scale. After obtaining these segmentation masks, it uses
a progressive scale-expansion algorithm to gradually expand all
the instances’ kernels to their complete shapes, then obtains the
final detection results which are the bounding quadrangles of the
detected text instances.

3.3 Evaluation Metrics

We use Wolf’s metrics[26] for evaluation. In the David Rumsey
Maps, the annotation is split into multiple polygons if a location
name has multiple words or it is in arbitrary shape, while mod-
els like PSENet[9] may detect the entire text instead of splitting
it, which should not be penalized as an incorrect detection. The
advantage of Wolf’s evaluation metric is that it can deal with one
to many (one ground truth, many detection polygons) and many to
one (many ground truths, one detection polygons) matching.

Let G denote the ground-truth, and D denote the detected poly-
gons. We construct two matrices o and 7. The rows i = 1, ..., |G|
of the matrices correspond to the ground truth polygons and the
columns j = 1, ..., |D| correspond to the detected polygons. The val-
ues of the two matrices correspond to area recall and area precision
between the row polygon G; and the column polygon Dj:

Area(G; N Dj)

oij = Rar(Gi. Dj) = —22es

4)
Area(G; N Dj)

ij = Par(Gi D) = =00 S

®)
Two polygons from the two sets G and D are matched only if the
overlap ratio for precision and recall are higher than the respective

threshold:
oij = ty (6)

where t, € [0,1] is the threshold on area recall and ¢, € [0,1]
is the threshold on area precision, both are set to be 0.5 in our
experiments.

There are three types of matchings:

One-to-one matching: One ground truth polygon G; matches
one predicted polygon D; if row i of both matrices contain
only one element satisfying (6) and (7) and column j of both
matrices contain only one element satisfying (6) and (7).

one-to-many matching (splits): one ground truth polygon
Gi matches a set S, of predicted polygon Dj,j € S, if:
a sufficiently large proportion of the ground truth poly-
gon has been detected (condition (6) in a “scattered” way):
2 jes, 0ij = tr and each contributing predicted polygon
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overlaps enough with the ground truth polygon to be con-
sidered a part of it (condition (7) in a “scattered” way): Vj €
So t Tij = bp.
many-to-one matching (merges): one predicted polygon D;
matches against a set Sy, of ground truth polygons if: A
sufficiently large portion of each ground truth polygon is
detected (condition (6) in a “scattered” version):Vi € Sy, :
oij 2 tr and each ground truth polygon has been detected
with enough area precision (condition (7) in a “scattered”
way): Xies,, Tij = Ip
Based on this matching strategy, the recall and precision mea-
sures can be finally defined as follows:

>i Matchg(Gi, D, ty, l’p)
€]

RoB(G, D, tr, tp) = (®)

2 jMatchp(Dj, G, tr, tp)
|D|

Pop(G, D, tr, tp) = 9

where

1 G; matches one detected polygon
Matchg(G;, D, tr,tp) = {0 G; matches no detected polygon
k  G; matches several detected polygons

(10)

1 Dj matches one truth polygon
Matchp(Dj, G, tr, tp) =410 Dj matches no truth polygon
k  D; matches several truth polygons

(11)

where k € [0, 1] is a hyper parameter considered as a penalty
for not being a one-to-one match.

In our experiments, we set t, = 0.5, tp =05 the same as Wolf et
al. [26] and k = 1, which means that we consider many-to-one and
one-to-many matching the same as the one-to-one without penalty.

3.4 Text Detection Result and Analysis

3.4.1 Settings. We experiment on a state-of-the-art text detection
model PSENet[24] and report the scores for the three following
settings. Notice that in all of these settings, no real historical map
images were used for training.

e ICDAR: Model trained on the out-of-domain dataset ICDAR
2015 Incidental Scene Text dataset

e SynthMap: Model trained on our synthetic dataset

e ICDAR+SynthMap: Model first trained on the out-of-domain
dataset then fine-tune on our synthetic dataset

For all of the above settings, we use exactly same network back-
bone, ResNet50 [6]. The backbone weights are initialized from
ImageNet [3]. The three settings only differ on the training set and
the training strategy.

In the ICDAR setting, we download the pretrained PSENet weights
from the official website and test the model directly on the David
Rumsey dataset without further adaptation. The model was trained
on the ICDAR15 dataset with image short side resized to 736 during
training. It is reported to have 78.5% F1 score on the ICDAR15 test
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split. We show the performance of this model on the David Rumsey
dataset in the first three columns of Table 3. The last row computes
the average precision, recall and F1 on all the images instead of on
the average of the map series. Table 2 records the number of maps
in each series and the average number of text labels in each map
sheet.

In the SynthMap setting, we train the PSENet model from scratch.
To enlarge the color variance of the SynthMap training set, we cre-
ated some images with SynthMap text layers but with OSM (no-text)
background. In the text layer, we added Gaussian noise to the text
region to simulate the "worn-out" effect in the historical map im-
ages. During training, in addition to the regular data augmentation
techniques such as flipping, resizing, and cropping, we also added
ColorJittering augmentation with hue and contrast change. The
base contrast of the original image is 1, and the augmentation ran-
domly changes the contrast of the image within the range [0.5,1.5].
For reference, the valid contrast values range is [0,2]. Contrast value
0 gives a solid gray image, and 2 increases the contrast by a factor
of 2. The base hue value is 0, and we randomly adjust the hue values
within range [-0.5,0.5]. This augmentation shifts the hue value in
the HSV space, where 0.5 and -0.5 give completely reversal hues
for the image.

In the ICDAR+SynthMap setting, we first load the weights trained
on the ICDAR dataset, then fine-tune the model with SynthMap
images. We use the same training strategy as in the second setting:
SynthMap. Using ICDAR-pretrained weights can be seen as the case
with better weight initialization.

3.4.2  Analysis. Table 3 summarizes the quantitative results for the
three settings. We can observe that the PSENet model trained on
SynthMap from scratch performs better than that trained on the
ICDAR dataset. This is likely due to the fact that the synthetic map
images are closer to the domain of map images while the scene
images from ICDAR are quite different from the map images. When
the PSENet model fine-tunes the weights on ICDAR with SynthMap
images, the accuracy boosted even further from 57.32% to 64.25%.
The improvement in the F1 score is mostly due to the improvement
on recall. The average recall rate for all the map images increased
from 45.00% to 55.25% .

From Table 3, we can also see that the ICDAR+SynthMap setting
improved on almost all the map series except for D006, D0089,
and D0117. We thus visualize the text detection results where the
PSENet benefits from SynthMap dataset in Figure 8. The figure
shows that the model trained with ICDAR settings fails to detect
many of the curved text regions, and it performs badly for the
horizontal text labels. Another hard case is when the font size is
very large, or the characters are very widely separated. PSENet
trained with ICDAR+SynthMap sometimes still suffers from the
widely-separated text labels, but the performance for this case still
improved quite a bit. For the large font, PSENet with ICDAR-SynthMap
draws tight polygons around the edge of the character, and this
sometimes might cause the recall o;; to drop lower than 0.5 and
thus be considered as a false negative. So if we loosen the ¢, thresh-
old for o3, the accuracy would be further increased. Table 4 shows
the performance with varying t, and ¢, thresholds. Smaller values
in the thresholds lead to higher numbers in the F1 score.
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Table 3: PSENet performance on David Rumsey dataset with weights trained on ICDAR, SynthMap and ICDAR+SynthMap.

ICDAR2015 SynthMap ICDAR + SynthMap
prec. recall F1 prec. recall F1 prec. recall F1
D0006 | 84.30% 44.80% 58.50% | 68.90%  25.30% 37.00% | 79.60% 27.70% 41.10%
D0017 | 81.10% 49.30%  61.30% | 85.30% 63.40% 72.70% | 88.90% 60.80%  72.20%
D0041 | 71.90% 48.90%  58.20% | 71.70% 70.80%  71.20% | 74.90% 72.35%  73.60%
Do0042 | 81.28% 34.18%  47.75% | 75.88% 48.65%  58.83% | 77.86% 55.75%  64.39%
D0079 | 45.30% 4.20% 7.70% | 40.50% 20.60% 27.30% | 31.30% 13.60%  19.00%
D0089 | 83.10% 49.90% 62.40% | 75.90% 44.60% 56.20% | 69.30% 48.10% 56.80%
D0090 | 82.80% 55.80%  66.70% | 90.60% 63.40%  74.60% | 91.00% 70.30%  79.30%
D0117 | 89.75% 56.13%  68.90% | 72.72%  55.55%  62.95% | 82.40% 55.12%  66.02%
D5005 | 88.55% 57.68%  69.57% | 78.38% 54.60%  64.23% | 82.55% 57.95% 67.87%
All 82.76% 45.00% 57.32% | 74.90% 51.73% 60.62% | 78.51% 55.25% 64.25%

Table 4: PSENet (ICDAR+SynthMap) F1 scores with varying t, and ¢, threshholds on one sample map image

‘ 1p=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ty=0.1 | 78.51% 77.95% 77.67% | 74.42% 70.48% 65.38% | 59.92% 47.90% 35.69%
0.2 77.28% 76.31% 7531% | 71.68% 67.87% 61.47% | 55.93% 44.57% 32.87%
0.3 75.87% 74.80% 73.09% | 69.38% 65.78% 58.65% | 52.64% 42.29% 30.13%
0.4 72.85% 71.85% 70.00% | 66.74% 61.94% 54.35% | 49.92% 39.23% 28.51%
0.5 70.93% 69.93% 67.63% | 63.79% 56.79% 50.39% | 46.01% 35.79% 26.39%
0.6 69.66% 68.25% 65.57% | 60.63% 53.05% 47.18% | 42.44% 32.87% 23.98%
0.7 66.19% 64.64% 61.34% | 56.03% 49.11% 44.20% | 37.97% 29.24% 20.36%
0.8 61.06% 58.57% 53.38% | 46.86% 38.45% 33.85% | 28.11% 22.48% 15.69%
0.9 51.15% 43.47% 37.60% | 28.14% 22.96% 19.05% | 16.63% 14.16% 10.85%

In Figure 9, we show several sample images where the PSENet
model ( ICDAR+SynthMap) fails. This gives us an idea on the scenar-
ios where our SynthMap dataset has not covered well yet. When
the background has large areas where the color has not appeared in
the training set before, the model fails to detect text regions on such
backgrounds. Also, the model does not perform well on vertical
text regions and widely separated text labels.

4 RELATED WORK
4.1 Text Detection Datasets

There are many text detection datasets collected in different do-
mains, such as scene images, video frames, and research publica-
tions [8, 21, 23, 28, 29]. The International Conference on Document
Analysis and Recognition (ICDAR) has made a great effort on or-
ganizing text detection competitions [8, 28] and encourages the
development of datasets and algorithms. During 2013-2015, the
competitions focused on born-digital documents and focused scene
text images. After 2015, incidental scene text detection has attracted
more attention. Scene images were taken by various devices (e.g.,
pocket cameras, cellphones, and drones) and collected to increase
the variety of the datasets. Text detection was no longer restricted
to English, a multi-lingual text detection dataset was also created
by ICDAR in 2019 [16].

MSRA-TD500 [29] is another dataset of scene image text detec-
tion. It contains 500 images for both indoor and outdoor scenes.

Although the size of the dataset is relatively small, the images have
large variations in the background lighting condition, font size,
style, and image resolution. The number of images in the ICDAR
datasets and COCO-Text MSRA-TD500 are comparably small for
training deep learning models. It is common to first pretrain the
model on some large-scale datasets then fine-tune on one of the
previous datasets.

COCO-Text [23] is a much larger dataset that contain 63,686
images with 145,859 text instances. It covers both machine-printed
and handwritten text in different languages.

Aside from those multi-lingual datasets [16, 23], there are some
datasets for Chinese character detection only. RCTW-17 [21] and
Chinese Text in the wild [30] are two benchmark datasets for this
purpose. RCTW-17 includes more than 12,000 images taken by
either phone cameras or phone screenshots. The images cover both
indoor and outdoor scenes, including street views, menus, and
posters. The text labels are annotated with quadrilaterals following
the ICDAR 2015 [8] convention. Chinese Text in the wild [30]
is an even larger dataset that contains 32,286 street view images
with about 1 million Chinese characters. There are 3,850 unique
characters that are commonly used in real-life scenarios. The dataset
has a large diversity in text font size, style, shape, and occlusion.

All the datasets mentioned above do not contain (or are not able
to annotate) the curved text labels. Thus two other datasets are
proposed for the curved-text detection: SCUT-CTW1500 [13] and
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Figure 8: Qualitative result comparison.

Figure 9: This figure shows the failure cases when trained on
ICDAR and fine-tuned on SynthMap. Left: The model fails
with unseen background color. Middle: The model fails to
detect vertical text regions. Right: Text detection fails when
the characters of the text labels are very widely separated.

TotalText [2]. SCUT-CTW1500 includes 1,500 images with 10,751
text labels. 3,530 are curved text instances among all the text labels.
The images are collected from various sources such as web pages,
image libraries, and phone cameras. The images have both English
words and Chinese characters, and many of those are multi-oriented.
TotalText [2] is roughly of the same size as SCUT-CTW1500, and it

contains 1,555 images that have text labels in different orientations
and shapes.

The above datasets are mainly for the scene text detection, and
text detection datasets in the historical map domain are pretty rare.
The David Rumsey Maps dataset [25] is one valuable historical text
detection dataset annotated by Weinman et al. This is the dataset
that we use in this paper for evaluation.

4.2 Synthetic Data Generation

The data collection and annotation require a lot of manual work,
and some researchers have proposed creating synthetic datasets for
the text detection tasks. SynthText [5] is a very large scale dataset
with about 800,000 real scene images and about 8 million synthetic
text instances. Each text label has character level, word level, and
bounding-boxes level annotations. SynthText uses a segmentation-
based method to find reasonable areas for label placement, such
that the resulting synthetic images look very natural. UnrealText
[15] contains about 600K synthetic images with about 12 million
word instances. It utilizes the UnrealText 3D graphics engine to
place the text lables on valid 3D object surfaces to achieve a realistic
appearance.
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The motivation of our proposed method and the above two
papers are very similar. We rely on synthetic data generation to
produce a large (potentially unlimited) amount of annotated data.
In contract to SynthText and UnrealText, our proposed method
generates the text data in the historical map domain and supports
the annotation of arbitary shaped and oriented text labels.

5 CONCLUSION AND FUTURE WORK

This paper presented an end-to-end pipeline, SynthMap, to generate
an unlimited amount of synthetic historical map images from Open-
StreetMap (OSM). SynthMap first uses a style transfer network to
convert OSM tiles to the NLS historical map style. Then SynthMap
uses the QGIS PAL API to place the text labels on the synthetic
map layers. We propose an annotation generation algorithm to
automatically generate polygon, centerline, and local height infor-
mation to represent the text label boundaries. With this method, we
created a SynthMap dataset with more than 10K synthetic historical
map images. The data can be used as the training data for the map
text detection tasks. We adopted a state-of-the-art text detection
model PSENet and train the model with our SynthMap dataset.
We compared the performance of the model when trained on the
out-of-domain dataset and observe a large improvement in the text
detection accuracy. The proposed method is a general pipeline, not
restricted to the CycleGAN model for style transfer. CycleGAN can
be replaced with any other more advanced style transfer models in
the future to generate synthetic map images with higher quality.
SynthMap can also potentially generate a large amount of training
data for other map analysis tasks, such as word-linking and road
delineation.
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