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Abstract. Many computer vision tasks are template-based learning tasks
in which multiple instances of a specific concept (e.g. multiple images of
a subject’s face) are available at once to the learning algorithm. The
template structure of the input data provides an opportunity for gen-
erating a robust and discriminative unified template-level representa-
tion that effectively exploits the inherent diversity of feature-level in-
formation across instances within a template. In contrast to other fea-
ture aggregation methods, we propose a new technique to dynamically
predict weights that consider factors such as noise and redundancy in
assessing the importance of image-level features and use those weights
to appropriately aggregate the features into a single template-level rep-
resentation. We present extensive experimental results on the MNIST,
CIFAR10, UCF101, IJB-A, I1JB-B, and Janus CS4 datasets to show that
the new technique outperforms statistical feature pooling methods as
well as other neural-network-based aggregation mechanisms on a broad
set of tasks.
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1 Introduction

In many computer vision tasks, the input data comes in the form of grouped in-
stances (“templates”) of examples (images, videos) related to the same object or
class. For example, in the case of face recognition where the task is to recognize
the identity of a subject, many face recognition datasets provide multiple images
of each subject, e.g., YouTube Faces (YTF) [1] and TARPA Janus Benchmarks
[2] [3]. Template-based learning is a natural extension of image-based learning.
When the template includes only one image, template-level recognition reduces
to image-level recognition. Of course, even in the case of a single-image recogni-
tion, there may be scenarios in which it is advantageous to generate a pseudo-
template by applying a sequence of augmentations to the base image using other
sources of information (e.g., 3D face model) to introduce useful variability.
Template-based learning, like image-based learning, requires an appropriate
mechanism to represent instances. Image-level representations or features are
easy to obtain from popular deep neural networks such as VGG16 [4] or ResNet
[5]. Two fundamental problems need to be overcome or accounted for in using
these individual representations in template-based learning: variability across
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Fig.1: WFPN can be constructed upon an arbitrary image-based learning network.
(a) Image-based learning network (base model). (b) Template-based weighted feature
pooling network (WFPN). The red block in feature extractor indicates split node (de-
tails in Section 3). Weight predictor network (green blocks) evaluates features in the
same template and generates significance scores. The green blocks share the weights
and have the same structure. This weight sharing technique enables WFPN to handle
dynamic-sized templates. Fusion function fuses image-level features to template level
feature according to the significance scores.

instances and varying numbers of instances from one template to the next. Dif-
ferent images in a given template may reveal different aspects of the underlying
object. They may also carry redundant and noisy information [6], and images
within the same template may exhibit significant diversity due to variances such
as lighting conditions, alternative view angles, or different background scenes.
Furthermore, the number of instances varies from one template to another; a nat-
ural way to deal with this variability is to generate a single, unified fixed-length
representation which we call the “template-level representation”.

The most straightforward way to generate a template-level representation is
to use the average pooling (or other order statistics) over image-level features,
which has been used extensively in recent works [7,8]. Such pooling, however,
ignores factors such as noise and redundancy. Importantly, the essence of average
pooling is that each feature carries equal weight, which is not true in most cases.
For example, certain features from high-resolution images might be more impor-
tant than those from low-resolution images while other features may be equally
important across both conditions. Other neural-network based approaches [9]
considered the difference of features by applying convolutional masks on fea-
tures, but the masking is always constant. The work that aligns most to ours
[10] proposed a cascade attention network, while we used a feed-forward struc-
ture that evaluates the features only once, and we incorporated template level
information. Ideally, feature pooling methods should be designed such that (1)
the complementary information from different instances/images can be exploited
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and irrelevant details are attenuated, and (2) the resulting representation is of a
fixed-size. It is based on this observation that we propose a new network design
that incorporates a dynamic weight predictor to automatically assign weights
according to the importance of each feature being aggregated.

The goal of this work is to design a network that produces a discrimina-
tive, compact fixed-length representation for any given template of arbitrary
size, which can be subsequently used in downstream classification or recogni-
tion tasks. We propose a generic weighted feature pooling network (WFPN)
that exploits discriminative information in the templates and generates robust
representations. As shown in Figure 1(b), our weighted feature pooling network
directly builds upon and seamlessly integrates with the underlying image-based
learning network, i.e., the base model. It is important to note that WFPN takes
dynamic-sized templates as input and produces task-specific outputs. Each im-
age inside the template goes through a feature extraction block to generate
image-level features. A weight predictor module then assigns weights to the im-
age features according to their importance, where less informative features are
assigned lower weights. Image features and weights are then fed into the fusion
layer to compute template representations. While we have used linear functions
in this work, the fusion layer can use either linear or nonlinear aggregation func-
tions. In our design, the predicted weights should be constrained to sum up to
one. WFPN can be trained with the same loss function as in the base model.

The main contribution of this work is the introduction of a new network mod-
ule (weight predictor) that explicitly and dynamically predicts the importance of
image-level features for templates of arbitrary sizes. The proposed WFPN is the
integration of weight predictor and the underlying base model. It can deal with
various template sizes and generate a discriminative feature that represents the
entire template. We quantitatively compared our network with traditional pool-
ing methods as well as neural-network-based approaches, and experiments show
superior performance of our WEPN. Furthermore, WFPN is a general end-to-end
framework that can be easily extended to solve a broad class of recognition and
classification problems. From a computational perspective, compared to its cor-
responding base models, WFPN provides a significant performance boost while
being parsimonious in its addition of parameters.

The remainder of this paper is organized as follows: In Section 2 we discuss
other feature pooling methods and briefly review related work. Section 3 de-
scribes the components of the weighted feature pooling network (WFPN) and
show how the weight predictor network is constructed. In Section 4 training
schemes and evaluation baselines are outlined. In Section 5 we evaluate WFPN
on multiple datasets. More specifically, with MNIST and CIFAR-10, we show
that image-based recognition problems can be easily extended to template-based
problems. With IJB-A, IJB-B and Janus CS4, we show that WFPN can deal
with dynamic template size on face recognition tasks. With UCF-101, we show
WEFPN can be applied to action recognition problems. We experimented with
various depth and structures of WFPN and observed consistent improvement
over statistical pooling and other attention networks.
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2 Related Work

The most relevant feature pooling methods can be broadly categorized into two
families—transformation-based pooling and neural network-based methods.

Average pooling and max-pooling are the most commonly used statistical
pooling methods to generate template representations. Despite their simplicity,
these two pooling methods have been remarkably effective in face recognition
problems. Hassner et al. [7] used average pooling over images and features that
grouped by image quality and head pose to generate template representations.
Kawulok et al. [8] applied max pooling over feature descriptors to obtain a single
representation from a collection of face images. In the above methods, pooling
is performed after feature extraction, and the choice of pooling operations is
essentially ad hoc. Some other works [11] [12] formulate the pooling problem as
finding orbit of a set of images, where the variations inside the set can be modeled
as unitary transforms. This approach is capable of capturing translation, in-plane
rotation, out-of-plane rotation, and illumination changes.

Attention networks also have an aggregation process when generating con-
text vector. Given a fixed target output, it loops over all the source hidden
states and compares with the current target state to generate scores. Then it
uses softmax to normalize all scores and generate attention alignment vector.
Then source-side context vector can be computed from the weighted sum of
source hidden states according to attention alignment vector. In visual attention
networks [13-15], spatial-attention and channel-attention mechanisms are widely
used for object recognition and detection, where an attention mask is learned to
focus on different regions of image.

In contrast to the approaches mentioned above, our proposed network ex-
plicitly predicts the importance (or weights) of image features using a weight
predictor model. The weight predictor model employed the attention mecha-
nism where the attention mask is determined dynamically based on the input
feature and template level information. Different from the attention networks
mentioned above, our attention model has a dynamic-sized attention window (or
attention span) instead of a fixed one. The dynamic-sized window is achieved by
the weight-sharing mechanism as illustrated in Figure 1. Compared with Yang et
al. [10], we use one single network instead of a cascaded style to perform weight
prediction—thus we only need to look at the features once to determine the
weights. Also, their attention-block method employed local feature information
to learn the mapping, while we also use template-level information by introduc-
ing a normalization layer after the input layer, which computes template mean
and variance to normalize the input data. Moreover, the weight predictor does
not have ordering constraint as in [15]. In our WFPN, the significance score
depends solely on the current input feature, and the network state is indepen-
dent of the previous input. Meaningly, even if the ordering of input images has
changed, the corresponding weights produced by the weight predictor module re-
main consistent. In the proposed WEPN model, feature pooling can be adapted
to different datasets and employed to solve different problems with the aid of
task-specific layers.
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3 Template Representation using Weighted Feature
Pooling Network (WFPN)

As mentioned in Section 1, template pooling can be utilized for in both image-
based and template-based learning tasks. For example, in IJB-A [2] and IJB-
B [3] face recognition datasets, a template is defined as a set of images and
video frames that contain the face of the same person, whereas in image patch
denoising problems [16], a template can be considered as a group of similar 2D
image fragments. In single-image-based learning tasks where template does not
exist, we can easily create a pseudo template from the base image using data
augmentation or data adaptation techniques. For instance, in the MNIST dataset
[17], we can arbitrarily rotate the images, such that the rotated copies form a
pseudo template for base images.

The overall architecture of WFPN is shown in Figure 1(b). Let X € RV*! be
the template that contains an arbitrary number of images, where N is the num-
ber of images, and [ is the length of the feature. The goal of WFPN is to compute
a X — yr mapping where yr is the task-specific, learned representation. WFPN
consists of a quintuple { F,P, C, M}, where F is the underlying feature extrac-
tion module (blue block on the left side of Figure 1b), P is the weight predictor
module (green network in the middle of Figure 1b), M is the fusion function
that aggregates the image-level representations to produce template-level fea-
tures using the weights estimated by P, and C is the underlying, task-specific
module (e.g., classifier or regressor). In this section, we describe the above four
components of WFPN that perform the X — y; mapping.

One of the main design goals of WEFPN is to easily integrate our weight pre-
dictor (as a plug and play module) into existing network architectures, without
changes to the underlying network. For every visual recognition task, we assume
there is an underlying image-based learning network, i.e., base model, that has
been developed specifically for the given task, as shown in Figure 1(a). Since deep
learning-based recognition methods generally learn feature extraction along with
the recognition task [18], a typical image-based recognition network can be con-
ceptually divided into two parts: feature extraction F and task-specific layers
C (e.g., classification layers). Therefore, we can define split node as the inter-
mediate layer that separates the two parts in the original recognition network.
The segment from the input layer to split node will be referred to as the feature
extraction block F, and the rest of the network will be thought of as task-specific
layers C. The output of the split node can be seen as the feature representation
of the input image—as shown in Figure 1(a). The choice of the split node is not
deterministic. Often, the split node is a fully connected layer or global average
pooling layer that produces 1D representation. Figure 1(b) shows an example
of constructing WFPN from the base model using the above splitting scheme.
Built upon the base model, WFPN uses a weight predictor P to predict the im-
portance of image-level features, and a fusion layer M takes predicted weights
together with image features to compute the final template representation.

Assume object X has a template size N (N can be different among different
objects), given the group of images X = {x1, z3,...xx} that belong to the same
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template, feature extraction layers are applied to get image features, Fx =
{fars fons---Jun}, and we want to obtain a template feature fr that represents
all the features in F'x. Those image-level features Fx = {fz,, fuo, ---fun | are
fed into the weight predictor module, which is essentially a regression network,
to produce corresponding weights Wx = {wg,, Wy, ..., s, }. Basically, input
features are treated separately by the same network such that each input feature
generates a weight value associated with it. In this way, we are able to handle
arbitrary template size since all the operations are applied feature-wise instead
of template-wise. Finally, the fusion layer computes fr = Zf\il Wy, fzn, Which
is the template-level feature representation. Note that va Wy, = 1.

The weight predictor module is composed of multiple fully connected layers
interpolated with drop-out layers (the number of hidden units and dropout rates
that may vary depending on the specific task). The last fully connected layer uses
3D softmax activation, since we want the predicted weights to ensure Ziv Wy, =
1. All layers are wrapped in a time-distributed layer such that each input feature
produces a corresponding weight, as shown in Figure 1(b). Formally, without
loss of generality, suppose the weight predictor has L fully-connected layers, and
x; € RM. Then the weight score w,, can be computed from the following steps.

o) =W f, 4O (1)

o) = maz{0, )} @

3)

oD — W) glL=1) 4 p0) @)

(L)
Wg; = exp(am (2) (5)
>, explaz;”)
Notice that W) is of shape (1 x D) where D is the dimension of g5 This

constraint ensures that w,, is scalar. Equation 5 guarantees that the output is
a probability distribution.

The above weight predictor network is wrapped in a time-distributed layer
which reads in a template tensor X € RY*M and performs the operations (1)-(4)
on each slice of X, namely x;, and their output will be softmax normalized. Each
x; € X is processed by P, and the parameters of P are shared by all x;, Vi €
{1,2,...N}. The weight predictor looks at each image feature individually and
predicts a value that expresses the significance of this feature. As shown above,
the weight predictor parameters {W® ... W)} are independent of template
size. Thus we can use dynamic template size during training and testing, as long
as the template size is fixed within each batch.

In some cases, we might want to harness template-level information to assist
the weight prediction of each single features. A straightforward way to achieve
this is to add a normalization layer before feeding the features into weight predic-
tor, such that features are normalized with the template mean and the template
variance. Template-level information is then encoded into image-level features.
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4 Training Scheme and Evaluation Methodology

In order to accurately evaluate the contribution of weight predictor versus the
underlying feature extraction and classification modules, we first pre-train the
base model (see Figure 1(a)) and then initialize WFPN with pre-trained weights,
such that feature extraction and classification blocks in these two models have
the learned weights. We further freeze those weights and train the rest of layers in
WEFPN with randomly initialized weights. The loss is computed using the output
of task-specific layers. For example, in classification tasks, we use categorical
cross-entropy as our loss function, as shown in Equation 6.

L(p,q) = = > _p(x)log(q(x)) (6)

The error is back-propagated end-to-end, although only the weight predictor
weights will be updated during the process because we have frozen the feature
extraction and classification module.

In terms of evaluation, we compare WFPN performance with three baseline
methods: single image classification without pooling, average pooling, and ma-
jority voting. For the single-image evaluation, we use the base model as shown in
Figure 1(a) for classification, without template synthesis. For average pooling, we
simply average over all features to obtain the template feature fr = % Ez;l Sz
and do classification. In majority voting (or hard voting), we do not compute any
template feature anymore. Instead, for feature vector Fx = {fz,; fas, - far }, We
predict a label vector Yx = {yu,, Ywy,---Yur }» which each y,, is the predicted
label of f,, by the classification network. We then carry out voting using Yx
and mark the template label g, to be the label that received maximum votes.
Uy = argmaxj y . NijYaz,, where j € C' is the class label and \jj = [y, = j].

5 Experimental Results

5.1 Influence of Template Synthesis Scheme on WFPN

In this section, we study the influence of the template synthesis scheme on WFPN
performance and show how to apply the weighted feature pooling network on
the MNIST [17] dataset, which is naturally a single-image dataset.

MNIST is a database of handwritten digits. It has 60,000 training images
and 10,000 testing images. We randomly split the training set into training and
validation sets with ratio 5:1. Since all the digits in MNIST were orientation-
normalized and centered in a fixed-size image, in order to evaluate the per-
formance of WFPN on different dataset distributions, we need first to cre-
ate some variations of MNIST that have distinctive distributions. We perturb
MNIST by randomly rotating the images by an angle © = {01, 65, ..., 05}, where
0; € U(—¢,d). We refer to this perturbed dataset as MNIST-ROT¢. All the
results in this section are reported on MNIST-ROT¢ instead of the original
MNIST dataset. By setting M = 10, we will have MNIST-ROT¢ containing
500,000 training, 100,000 validation, and 100,000 testing samples.
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Fig.2: MNIST pseudo template generation. First augment original MNIST dataset
through rotation to generate MNIST-ROT¢, then generate pseudo templates for
MNIST-ROT¢ for different ¢ angles.
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Fig.3: WFPN-predicted weights on MNIST and CIFAR-10 (base model: Resnet18).
Note that weight prediction is performed on features. The red line splits template
images into two parts: images on left side have weights above average, images on right
side have weights below average.

Since MNIST-ROT¢ does not have the concept of template, we need to syn-
thesize the pseudo templates in a meaningful way. Figure 2 illustrates how tem-
plates are generated from MNIST-ROT¢ images. An image x in MNIST-ROT¢
is augmented with a sequence of rotations with angle 2 = {wy,ws, ...w7}, where
w; € U(—¢,¢) and T is the size of the synthesized template. We can use either
dynamic or fixed template size for training, and we use template size {8,11,20}
for testing to better evaluate the performance of WFPN with controlled vari-
ables. Note that the rotation angle range in augmentation should be at least the
same as in perturbation because we want all the tilted digits to have a chance
to rotate back to their original positions. In this paper, we use the same angle
range for perturbation and augmentation.

We first train an MNIST-CNN network on MNIST-ROT¢. We use a simple
4-layer convolutional network as the base model.! We pre-train MNIST-CNN on
MNIST-ROT¢ for 100 epochs with batch size = 128 and get the testing result
as our single image classification baseline. For template-based recognition with

! https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
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Table 1: Comparison of training with fixed/dynamic template size. For testing data of
a certain tsize in (8,11,20), if training tsize is fized, then the template size of training
data is (8,11,20) respectively. If training tsize is dynamic, then the template size of
training data change dynamically for each batch and is range from [8,20]. (Numbers in
the table are errors, the lower the better.)

Err. (%) ||tsize 8 11 20
Rot. range||img. |fixed dynam. |fixed dynam.|fixed dynam.
5 0.7310.72 0.71 |0.71 0.72 |0.71 0.72

15 1.09|10.86 0.88 |1.24 1.19 |0.83 0.85
45 2.26/1.20 1.14 |18 1.36 |1.17 1.09
75 2.9312.10 1.88 |1.55 1.44 |1.43 1.46
90 4.59(2.53 1.88 |1.99 186 [2.19 2.21

Table 2: Comparison of different template synthesizing method. With rand. rot. angle,
we randomly sample rotation angles for testing. With fized rot. sequence, we use a set

of angles with a fixed interval 2 = {w1, w2, ...wr} where |wit1 — w;i| = % (Numbers
in the table are errors, the lower the better.)
Err. (%) Single image: 4.59 (¢ = 90)
rand. rot. angles H fixed rot. sequence

tmplt. |avg. vote. NANJ[10] ours [|avg. vote. NAN[10] ours
8 4.42 880 3.62 2.53|(4.89 3.91 242 1.98
11 4.12 4.31 2.83 1.99(|14.90 3.49 218 1.71
20 9.6710.24 3.45 2.19(5.12 3.33 2.28 1.77

WEFPN, we let the split node be the second-last fully connected layer and use a
weight predictor network that has three fully connected layers and three dropout
layers. The number of filters is {128, 8, 1} respectively. The dropout layers have
dropout rates of 0.25. As mentioned in Section 3, all of the above layers are
wrapped in time distributed layers. For the choice of ¢, we experimented with a
group of angle ranges: [5, 15, 45, 75, 90]. Thus we have five different perturbed
datasets. After training the MNIST-CNN network for each dataset, we obtained
the testing error rates shown in Table 1 in column labeled imyg.

During training of WFPN we can either use a dynamic template size or
fixed template size. When using dynamic template size, the network will learn
to handle test sets with arbitrary template size. We compare the results of WFPN
against our single image classification baseline. Results are shown in Table 1 (the
test sets are generated using randomly sampled rotation angles). We observe that
the network trained with dynamic template size has generally better performance
than the ones trained with fixed size templates. Also, there are multiple ways of
generating templates for testing. We can either randomly sample rotation angles,
or we use a set of angles with a fixed interval. The first setting can be used to
evaluate the performance of the weight predictor when template generation is
random. The second setting guarantees that the existence of an image in our
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synthesized template is as close to an optimal tilted position as possible. Results
are shown in Table 2.

5.2 Influence of Base Model Structure on WFPN

In this section, we study the influence of base model structure on the WFPN
performance using CIFAR-10 dataset. CIFAR-10 has 60,000 color images of size
32 x 32, with 50,000 for training and 10,000 for testing. Those images contain
objects from 10 classes. We keep 5,000 for validation and use the rest to train
the WFPN network.

We experimented with three base models, Resnet-18 [5], Resnet-20 [5] and
adapted-VGG16 on CIFAR-10[19]. For the first two models, we let the split node
be the flatten layer before the last fully connected layer. Then the classification
block would be the one fully connected layer (last layer) with softmax activa-
tion. The feature extraction block consists of layers in-between the input layer
and split node. The output feature dimension is 512 for Resnet-18 and 64 for
Resnet-20. For the VGG16 model, the split node is again the flatten layer—thus
the classification block has two fully connected layers, and the feature extraction
block has 13 convolutional layers. The flatten layer serves as the output of the
feature extraction block. With this structure, the feature dimension is 512. Dur-
ing training, we use the loss function defined in Equation 6. In the corresponding
WEFPN models, all weight predictors have the same structure: 3 fully connected
layers with {128, 8, 1} filters; dropout layers have a dropout rate of 0.25.

WEPN is initialized from the pre-trained base model, such that feature ex-
traction block and classification block weights are loaded. The loaded weights
are frozen during the training of WFPN thus only the weight predictor module
is trainable. Then the performance change will only be related to feature pooling
methods instead of the fine-tuning of feature extractor and classifier.

In this experiment, we synthesize templates by randomly shifting and hori-
zontally flipping the base image. The shifting range is [-6, +6] pixels in all di-
rections, and shift distance is uniformly and randomly selected. The number of
augmentations indicates template size. Note that the above augmentation meth-
ods can also be used to train our base models described earlier, but the purposes
of augmentation are different. During training the base model, augmentation
is a common trick used against over-fitting. While training the WFPN model,
augmentation is used to generate templates from one seed image, and the model
learns to disregard redundant or noisy information to produce compact and dis-
criminative features.

We compared the performance of WEFPN with two baselines and the NAN
network in [10]. We observed that WFPN has higher accuracy than mostly all
three baselines. Results are shown in Table 3.

5.3 WEFPN For Face Recognition

In this section we evaluate WFPN on the face recognition task using the LJB-
AJ2], IJB-B [3] and Janus CS4 dataset. Our base model is ResFacel01 in [20],
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Table 3: Comparison of baselines and WFPN performance. WFPN consistently out-
performs baselines and NAN for different network structures with different depth.
Acc. (%) img. |[tmplt.|avg. pool voting NAN[10] ours
3 91.47 90.06 91.64 92.49
92.09 91.59 92.09 93.17
91.88 90.98 92.71 93.17

89.80 88.85 89.69 90.02
90.66 89.97 90.36 90.89
90.47 89.40 90.63 90.84

93.69 93.32 93.54 93.84
93.88 93.62 94.11 93.92
93.66 93.39 93.88 94.02

Resnet20 || 91.42

Resnet18 || 89.41

VGG16 93.59

Q0| Ut Lo|| Co| U1 W] Cof Ut

which is a deep neural network with 101 convolutional layers. Since these datasets
have already pre-defined the templates, we do not need to synthesize templates
anymore.

In facial recognition problems, we adapt our weight predictor module by
adding one extra normalization layer after the input of features. The purpose of
of this layer is to encode local information within the template, such that even
with exactly the same image feature input, the absolute weight value could be
different depending on its neighboring features inside the same template. The
normalization layer is defined as g(x;) = (x; — X)/0(X), where X € RV*M s a
template tensor with template size N and feature length M, o(X) denotes the
variance of X, and X = % Zil Xj.

For face recognition problems, we are only interested in the areas that con-
tain faces. However, images in the uncontrolled environment have large illumina-
tion, background, and environment variations [18]. Thus necessary preprocessing
steps are applied to crop out face regions, detect landmarks, and align the faces
[18] [24]. The input to face recognition networks should be aligned face images
cropped by tight bounding boxes.

For training, we used a combination of three datasets: Microsoft Celeb [25],
Oxford VGG face [22] and CASIA WebFace dataset [26]. The combined data
set has a total of 6,641,205 images from 68,906 subjects, and we split them into
three parts — train, val, and test. Training and validation have 6,597,046 images,
and the remainder is used for testing. The advantage of using this combined
dataset is the huge amount of data. However, this dataset does mot have the
concept of template thus we need to synthesize templates for training weight
predictor. In this case, we cannot simply use augmentations as we did for MNIST
and CIFAR datasets since synthesized templates from one single image do not
provide much information about the subject. Instead, we should select different
images for one subject and group them as a template. Since we want our model
to be able to handle dynamic template size during testing time, we should also
train our model with dynamic size templates. In order to decide the appropriate
template size, we further studied the IJB-B gallery set and analyzed its template
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(c) WPFN is able to distinguish outliers

Fig. 4: Weights visualization of 1JB-B.

size distribution. We observed that the template size could be fitted using an
exponential distribution. Therefore, during training, we determine the template
size dynamically according to the exponential probability of mass distribution.
The loss function we use is defined in Equation 6.

The trained network was testing on the IJB-A, IJB-B and CS4 datasets
without fine-tuning. There are 1845 subjects in IJB-B dataset with still images,
video frames, and videos collected from the web. CS4 has 3548 subjects with
a total of 23,221 templates. Evaluation is performed using the still images and
keyframes protocol. Results are shown in Table 5. The last two columns are
the absolute improvement and relative improvement respectively. We can better
understand the effect of WFPN by visualizing the images and their associated
weights. Figure 4 illustrates that WFPN has favorable properties.

5.4 WEFPN for Action Recognition

In this experiment we apply WFPN on UCF-101 dataset [27], an action recogni-
tion dataset that has 101 classes of human actions with 13320 videos. We followed
the same pre-processing steps as in [28] and used RGB stream and optical flow
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Table 4: Comparison of WEPN and state-of-the-art networks on IJB-A (*: result
reported in [21], T: NAN single attention model ,i: NAN cascade model)

Method 1:1 Verification TARQFAR |1:N Identification TPIRQFPIR
le-3 1le-2 le-1 le-4 1le-3 1le-2 le-1
VGG-Face* [22] - 0.805 - - - 0.461 0.670
Triplet [23] 0.813 0.900 0.964 - - 0.753 0.863
Multi-pose[18] - 0.787 0.911 - - 0876 0.954
Templt-Adapt [21]|| 0.836 0.939 0.979 - - 0.774 0.882
NAN 7[10] 0.860 0.933 0.979 - - 0.804 0.909
NANT [10] 0.881 0.941 0.978 - - 0.817 0.917
Pool-Face [7] - - - 0.538 0.735 0.875 -
WEFPN 0.906 0.954 0.981 0.878 0.932 0.966 0.981

Table 5: Comparison of average pooling and WFPN on IJB-B and CS4

IJB-B 1-N Identification CS4 1-N Identification

Avg. WFPN Absolute Relative| Avg. WFPN Absolute Relative

TARQFAR=0.001%10.484 0.563  0.079 15.31% |0.584 0.651  0.067 16.11%
TAR@QFAR=0.01% [0.748 0.786  0.038 15.08% |0.786 0.814  0.028 13.08%
TARQFAR=0.1% [0.891 0.901 0.010  9.17% |0.907 0.915 0.008 8.60%

Rank 1 0.890 0.904 0.014 12.73% [0.895 0.905 0.010  9.52%
Rank 5 0.945 0.950 0.005  9.09% [0.941 0.947 0.006 10.17%
Rank 10 0.960 0.964 0.004 10.00% [0.956 0.960 0.004  9.09%

streams for our experiments. For optical flow stream, videos are processed using
the TV-L1 algorithm [29] with pixel values truncated to [-20,20] and also resized
with short side equals to 256. During training, we randomly crop out a (224
x 224) region spatially and select 64 consecutive frames temporally. For videos
that are not long enough, we replicate the video until it has more than 64 frames,
and take the first 64. For testing, we crop out the center region of size (224 x
224) and select 250 time frames. Images are loaded in [0,255] range and then
scaled to [-1,1] range by multiplying a constant number 255/2 and subtracting
1. Flows are also scaled using the same procedure.

The base model we use to initialize WFPN is the Inflated 3D Convnet (I3D)
in [28]. The weights are pretrained on ImageNet and Kinetics and fine-tuned
on UCF101 with learning rate 0.1, mini-batch size 6, and weight decay le-T7.
I3D is a two-stream network that operates on both RGB and flow streams,
and we treat each stream as the base model. In the base model, a stack of 3D
convolutional filters are applied to the input, and then a spatial global average
pooling is applied on top of them. The tensor has a temporal receptive field of 99
frames in input RGB stream. In the classifier, each remaining frame predicts a
logit distribution of output categories, which are averaged to generate the video
logit distribution. The softmax of video logit distribution gives class probability
distribution. It is clear that each spatially convolved frame has equal weight
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in determining the final probability distribution, which might not be optimal.
Thus we can insert our weight predictor module into the classifier and perform
the soft aggregation. Instead of averaging the logit distributions, the weight
predictor takes in all the logit distributions produced by each spatially convolved
frame and predicts the importance of each distribution for generating video logit
distribution.

Results of WEFPN compared with other state-of-the-art networks are shown
in Table 6. We can see that WFPN outperforms its corresponding base models
[28] and achieves the highest accuracy on this dataset.

Table 6: Comparison of WFPN and other methods on UCF101 dataset. (WFPN ini-
tialized from imagenet + kinetics pretrained weights, *: Keras implementation)
| [[Two-Strm [30] Conv-TS [9] TSN [31] HiddenTSN [32] I3D [28][WFPN]

RGB 73.0 82.61 84.5 85.7 92.2% | 94.1
Flow 83.7 86.25 87.2 86.3 94.7*% | 96.3
Joint 88.0 90.62 92.0 92.5 96.0% | 97.8

6 Conclusion

We present the weighted feature pooling network (WFPN) that is designed for
template-based recognition problems. This network is conceptually composed of
four parts: feature extractor, weight predictor, fusion function and task-specific
layers. Feature extractor produces image-level features for all the images in the
same template, and weight predictor predicts the significance of each image
and fusion function aggregates image-level features to template-level features
according to their significance. This network can extract complementary infor-
mation, remove noise, and produce a compact and discriminative template fea-
ture. WFPN is lightweight and easy to generalize on many tasks such as object
classification, face recognition, and video activity recognition.
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