
Unearthing	Hidden	Treasures:
Detecting	Critical	Minerals	from	Historical	Maps
Zekun Li 1, Weiwei Duan 2, Yijun Lin 1, Fandel Lin 2, Tanisha Shrotriya1 , Yao-Yi Chiang 1 and Craig Knoblock 2 

1 University of Minnesota, 2 University of Southern California

CRITICAL	MINERAL	DETECTION	TASK
• The United States Geological Survey (USGS) collects large volumes of 

historical maps to assess the availability of critical minerals
• Detect the mineral deposit on the maps (figure below)

• However, manually reviewing these maps is time-consuming

• Task: Given a target symbol, automatically and accurately identify its 
appearances on the historical maps
• Three types of features: lines, polygons, and points

• The output is image segmention indicating the symbol positions

CHALLENGES IN FEATURE DETECTION
• Computational challenge: Need to build individual models for every 

symbol from the provided map scans

• Some line features are similar, easily causing false detection. Also, the 
detected lines need to be continuous in the segmentation results

• Polygon features have various colors, texts, and textures. Simple color-
based methods do not handle the symbols within the polygons. Some 
target symbols are hard to distinguish

• Point features are suffering from lack of training data and large variations

SYMBOL DETECTION

CONCLUSION &	ACKNOWLEDGEMENT

MSI & RC RESOURCES

EVAL METRICS & RESULTS

• Our team (ISI-UMN) won the First Place in DARPA Map Feature
Extraction Challenge (https://criticalminerals.darpa.mil/)

• The proposed system automatically detects line, polygon, point features
on the historical map scans, which helps critical mineral assessments

• We thank USGS and DAPAR for providing the high-resolution historical
maps and organizing the competition

• We acknowledge MSI and Research Computing for providing powerful
computational resources that significantly benefit the research

• The polygon feature detection model synergizes the color, pattern of text, 
and map texture for extracting polygons

Polygon Detection Median Precision Median Recall Median Macro F-1
Color 0.680 0.971 0.737
Color + Text 0.747 0.967 0.780
Color + Text + Texture 0.866 0.937 0.823

Polygon Feature
Line Feature

Point Feature
Symbol
(Sid Butte
& Vent)

Map sub 
region

Symbol
(Eruptive Fissure)

Symbol
(Sample Sites)

Samples of point feature symbols 

Legend: 

On map: 

Color mismatch Extreme Size Variation

Legend: 

On map: 

• The point feature detection module involves three models to handle 
large variations of symbols: a color-based model, a deep neural network 
(DNN) model, and a shape-based template matching model.

1) Find mode color from legend

2) Get segmentation
mask with color search

3) Compute mass
center of the contour

Color-based Model

Binary-classification DNN

Template Matching Model

Point Detection Visualization

Input map Matching confidence

RGB

Find elbow point on confidence map

• Train a NN classifier for each symbol
• Positive: Crop around the ground-truth (GT) location
• Negative: 
• Hard negative: (p=0.25) other symbols in the same map
• Random negative: (p=0.75) randomly crop from foreground region

which does not overlap with positive samples

𝐿!" = −$
#$%

&

𝑡# 𝑙𝑜𝑔(𝑝#)Loss function: 
𝑡#:
𝑝#:

Ground-truth {0,1} for sample i
Predicted probability for sample i

• The line feature detection model takes a map image as an input, and 
leverages attention mechanism to predict the line vectors, consisting of 
nodes and edges

• Stored large-scale scanned maps
(283 in total with a size of ~100G)
and intermediate results on the
MSI High Performance Storage

• Used the GPU resources (A100)
on MSI for training various deep
neural networks.

• We trained models for >30 types
of line features and 15 types
of point features, respectively.

The locations of mineral deposit on a map

Line Detection Visualization (green lines)

• MSI high-performance machines
enabled us to preprocess maps in
parallel, which greatly speeded up
the development of models

• The powerful GPUs allowed us to
quickly conduct tests in the short
competition window (48 hours),
which wouldn’t be possible with
CPU-only machines

The Use of MSI & RC Resources How much did RC resources contribute?


